

Knowledge-based agents

- A knowledge-based agent includes a knowledge base and an inference system.
- A knowledge base is a set of representations of facts of the world.
- Each individual representation is called a sentence.
- The sentences are expressed in a knowledge representation language.

Knowledge-based agents

• The agent operates as follows:

1. It **TELLs** the knowledge base what it perceives.

- 2. It ASKs the knowledge base what action it should perform.
- 3. It executes the chosen <u>action</u>.

Architecture of Knowledge

Knowledge Level

- The most abstract level: describe agent by saying what it knows.
- Example: A taxi agent might know that the Golden Gate Bridge connects San Francisco with the Marin County.

Logical Level

- The level at which the knowledge is <u>encoded into sentences</u>.
- Example: Links(GoldenGateBridge, SanFrancisco, MarinCounty).

Implementation Level

- The physical representation of the sentences in the logical level.
- Example: '(links goldengatebridge sanfrancisco marincounty)

Inference

- The Inference Engine derives new sentences from the input and KB
- The inference mechanism depends on representation in KB
- The agent operates as follows:
 - 1. It receives percepts from environment
 - 2. It computes what action it should perform (by IE and KB)
 - 3. It performs the chosen action (some actions are simply inserting inferred new facts into KB).

Architecture of Knowledge

The Wumpus World environment

- The Wumpus computer game
- The agent explores a cave consisting of rooms connected by passageways.
- Lurking somewhere in the cave is the Wumpus, a beast that <u>eats any agent</u> that enters its room.
- Some rooms contain bottomless pits that trap any agent that wanders into the room.
- Occasionally, there is a heap of gold in a room.
- The goal is:
 - to collect the gold and
 - exit the world
 - Don't get eaten

History of "Hunt the Wumpus"

• **WUMPUS** /wuhm'p*s/ n. The central monster (and, in many versions, the name) of a famous family of very early computer games called "Hunt The Wumpus," dating back at least to 1972

 The wumpus lived somewhere in a cave with the topology of a dodecahedron's edge/vertex graph

 (later versions supported other topologies, including an icosahedron and Mobius strip).

• The player started somewhere at random in the cave with five "crooked arrows";

- these could be shot through up to three connected rooms, and would kill the wumpus on a hit
 - (later versions introduced the wounded wumpus, which got very angry).

A typical Wumpus world

- The agent starts in the field [1,1].
- The task is to find the gold, return to the field [1,1] and climb out of the cave.

Agent in a Wumpus world: Percepts

• The agent perceives

- a stench in the square containing the wumpus and in the adjacent squares (not diagonally)
- a breeze in the squares adjacent to a pit
- a glitter in the square where the gold is
- a bump, if it walks into a wall
- a woeful scream everywhere in the cave, if the wumpus is killed
- The percepts will be given as a five-symbol list:
 - If there is a stench, and a breeze, but no glitter, no bump, and no scream, the percept is

[Stench, Breeze, None, None, None]

The actions of the agent in Wumpus game are:

• go forward

- turn right 90 degrees
- turn left 90 degrees
- grab means pick up an object that is in the same square as the agent
- shoot means fire an arrow in a straight line in the direction the agent is looking.
 - The arrow continues until it either hits and kills the wumpus or hits the wall.
 - The agent has only one arrow.
 - Only the first shot has any effect.
- **climb** is used to leave the cave.
 - Only effective in start field.
- **die**, if the agent enters a square with a pit or a live wumpus.
 - (No take-backs!)

The agent's goal

The agent's goal is to find the gold and bring it back to the start as quickly as possible, without getting killed.

- 1000 points reward for climbing out of the cave with the gold
- —1 point deducted for every action taken
- -10000 points penalty for getting killed
- -100 points for killing the Wumpus

The Wumpus agent's first step

_						A			
1,4	+	2,4	3,4	4,4	A	= Agent	1,4	2,4	3,4
					В	= Breeze			
					G	= Glitter, Gold			
					ОК	L = Safe square			
1.3	}	2.3	3.3	4.3	Р	= Pit	1.3	2.3	3.3
				·	S	= Stench			Ľ.
					v	= Visited			
					W	= Wumpus			
1,2	2	2,2	3,2	4,2			1,2	^{2,2} P?	3,2
	ок						ок		
1,1		2,1	3,1	4,1			1,1	2,1	3,1
	Α						v		
	ок	ок					ок	ок	

4.4

4.3

4.2

4.1

P?

Later

				_				
1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square	1,4	2,4 P?	3,4	4,4
^{1,3} w:	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	^{1,3} w:	^{2,3} A SG B	^{3,3} P?	4,3
^{1,2} A s ok	2,2 OK	3,2	4,2		^{1,2} s v ок	2,2 V OK	3,2	4,2
1,1 V OK	^{2,1} B V OK	^{3,1} P!	4,1		1,1 V OK	^{2,1} в V ок	^{3,1} P!	4,1

(a)

(b)

Representation, reasoning, and logic

- The object of *knowledge representation* is to <u>express knowledge</u> in a **computer-tractable form**, so that agents can perform well.
- A knowledge representation language is defined by:
 - its syntax, which defines all possible sequences of symbols that constitute sentences of the language.
 - Examples: Sentences in a book, bit patterns in computer memory.
 - its semantics, which determines the facts in the world to which the sentences refer.
 - Each sentence makes a claim about the world.
 - An agent is said to believe a sentence about the world.

The connection between sentences and facts

Semantics <u>maps sentences</u> in logic <u>to facts</u> in the world. The property of *one fact following from another* is mirrored by the property of <u>one sentence being entailed by another</u>.

Different Logics

Different Logics

Propositional Logic: Sentences are atomic in form.

A,B,C A->B, AorB
First Order PC: Sentences are predicates applied to objects (on A B), (taller Bob Sam), if(on ?x ?y) (covered ?y)
Higher Order: Quantification can be applied to features
Modal Logic: Sentences can be qualified by features like certainty
Temporal Logic: Sentences are linked to time.

Ontology and epistemology

- Ontology is the study of what there is,
 - An inventory of what exists.
 - An ontological commitment is a commitment to an existence claim.
- Epistemology is a branch of philosophy that concerns the <u>forms, nature, and preconditions of</u> <u>knowledge.</u>

Problems with ontologies

They get complex They aren't consistent They change over time They aren't everything *

Propositional logic

- Logical constants: true, false
- Propositional symbols: P, Q, S, ...
- Wrapping **parentheses**: (...)
- Sentences are combined by **connectives**:
 - \land ...and
 - V...or
 - \Rightarrow ...implies
 - ⇔..is equivalent
 - **−**...not

Propositional logic (PL)

- A simple language useful for showing key ideas and definitions
- User defines a set of propositional symbols, like P and Q.
- User defines the semantics of each of these symbols, e.g.:
 - P means "It is hot"
 - Q means "It is humid"
 - R means "It is raining"
- A sentence (aka formula, well-formed formula, wff) defined as:
 - A symbol
 - If S is a sentence, then ~S is a sentence (e.g., "not")
 - If S is a sentence, then so is (S)
 - If S and T are sentences, then (S v T), (S ^ T), (S => T), and (S <=> T) are sentences (e.g., "or," "and," "implies," and "if and only if")
 - A finite number of applications of the above

Examples of PL sentences

• (P ^ Q) => R

"If it is hot and humid, then it is raining"

• Q => P

"If it is humid, then it is hot"

• Q

"It is humid."

 A better way: Ho = "It is hot" Hu = "It is humid" R = "It is raining"

A BNF grammar of sentences in propositional logic

The overall model

- The meaning or **semantics** of a sentence <u>determines its</u> <u>interpretation</u>.
- Given the truth values of all of symbols in a sentence, it can be <u>"evaluated</u>" to determine its truth value (True or False).
- A model for a KB is a <u>"possible world</u>" in which each sentence in the KB is True.
- A valid sentence or tautology is a sentence that is True under all interpretations, no matter what the world is actually like or what the semantics is.
 - Example: "It's raining or it's not raining."
- An **inconsistent sentence** or **contradiction** is a sentence that is False under all interpretations.
 - The world is never like what it describes, as in "It's raining and it's not raining."
- **Pentails Q**, written P |= Q, means that whenever P is True, so is Q.
 - In other words, all models of P are also models of Q.

Truth tables

A	rd			C)r	
p q	$p \cdot q$		p q	I	$p \lor q$	
$egin{array}{ccc} T & T \ T & F \ F & T \ F & F \end{array}$	T F F F	1 1 1 1 1	- 7 - 7 - 7 - 7 - 7 - 7	י ר ר	$egin{array}{c} T \ T \ T \ F \end{array}$	
<i>If</i>	. then			N	ot	
рq	$p \supset q$		P	I	$\sim p$	
$egin{array}{ccc} T & T \ T & F \ F & T \end{array}$	T F T		T F		F T	
F F	\tilde{T}					

Truth tables II

The five logical connectives:

P	Q	$\neg P$	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	Тпие	False	False	Тпие	True
False	Тгие	Тпие	False	Тпие	Тгие	False
True	False	False	False	True	False	False
True	True	False	True	Тпие	True	True

A complex sentence:

Р	Н	$P \lor H$	$(P \lor H) \land \neg H$	$((P \lor H) \land \neg H) \implies P$
False	False	False	False	True
False	Тпие	True	False	True
True	False	True	True	True
True	True	Тгие	False	True

Inference rules

- Logical inference is used to create new sentences that logically follow from a given set of sentences (KB).
- An inference rule is sound if every sentence X produced by it operating on a KB logically follows from the KB.
 – (That is, the inference rule does not create any contradictions)
- An inference rule is **complete** if it is able to **produce** every expression that *logically follows* from the KB.
 - We also say <u>*"expression is entailed by KB"*</u>.
 - Pleas note the analogy to complete search algorithms.

Sound rules of inference

- Here are some examples of sound rules of inference.
- Each can be shown to be sound using a truth table:
 - A rule is sound if its conclusion is true whenever the premise is true.

RULE PR	EMISE	CONCLUSION
Modus Ponens	A, A => B	В
And Introduction	Α, Β	A ^ B
And Elimination	A ^ B	А
Double Negation	~~A	А
Unit Resolution	A v B, ~B	А
Resolution	A v B, ~B v C	A v C

Sound Inference Rules (deductive rules)

- Here are some examples of sound rules of inference.
- Each can be shown to be sound using a truth table -- a rule is sound if it's conclusion is true whenever the premise is true.

RULE	PREMISE	CONCLUSION
Modus Tollens	~B, A => B	~A
Or Introduction	A	A v B
Chaining	A => B, B => C	A => C

Proving things

- A proof is a sequence of sentences, where <u>each sentence</u> is *either a premise* or a sentence derived from earlier sentences in the proof by one of the rules of inference.
- The last sentence is the **theorem** (also called goal or query) that we want to prove.
- Example for the "weather problem" given above.

1 Hu	Premise	"It is humid"
2 Hu=>Ho	Premise	"If it is humid, it is hot"
3 Ho	Modus Ponens(1,2)	"It is hot"
4 (Ho^Hu)=>	>R Premise	"If it' s hot & humid, it' s raining"
5 Ho^Hu	And Introduction(1,2)	"It is hot and humid"
6 R	Modus Ponens(4,5)	"It is raining"

Proof by resolution

premises

theorem

- Theorem proving as search
 - Start node: the set of given premises/axioms (KB + Input)
 - **Operator:** inference rule (add a new sentence into parent node)
 - Goal: a state that contains the theorem asked to prove
 - Solution: a path from start node to a goal

Entailment and derivation

Entailment: KB |= Q

- Q is entailed by KB (a set of premises or assumptions) <u>if and</u> <u>only if</u> there is no logically possible world in which Q is false while all the premises in KB are true.
- Or, stated positively, Q is entailed by KB <u>if and only if</u> the conclusion is true in every logically possible world in which all the premises in KB are true.

Derivation: KB |- Q

 We can derive Q from KB if there is a proof consisting of a sequence of valid inference steps starting from the premises in KB and resulting in Q Two important properties for inference

Soundness: If KB |- Q then KB |= Q

- If Q is derived from a set of sentences KB using a given set of rules of inference, then Q is entailed by KB.
- Hence, inference produces only real entailments,
 - or any sentence that follows deductively from the premises is valid.

Completeness: If KB |= Q then KB |- Q

- If Q is entailed by a set of sentences KB, then Q can be derived from KB using the rules of inference.
- Hence, inference produces all entailments,
 - or all valid sentences can be proved from the premises.

Propositional logic is Weak

- Hard to identify "**individuals**." E.g., Mary, 3 —Individuals cannot be PL sentences themselves.
- <u>Can't directly talk about properties</u> of individuals or <u>relations</u> between individuals. (hard to connect individuals to class properties).
 - –E.g., property of being a human implies property of being mortal–E.g. "Bill is tall"
- <u>Generalizations, patterns, regularities can't easily be</u> <u>represented</u>.
 - -E.g., all triangles have 3 sides
 - -All members of a class have this property
 - -Some members of a class have this property
- A better representation is needed to capture the relationship (and distinction) between objects and classes, including properties belonging to classes and individuals.

Confusius Example: weakness of PL

- Consider the problem of representing the following information:
 - Every person is mortal.
 - Confucius is a person.
 - Confucius is mortal.
- How can these sentences be represented so that we can infer the third sentence from the first two?
What do we need

- In PL we have to create propositional symbols to stand for all or part of each sentence. For example, we might do:
 P = "person"; Q = "mortal"; R = "Confucius"
- so the above 3 sentences are represented as:
 P => Q; R => P; R => Q
- Although the third sentence is entailed by the first two, we needed an explicit symbol, R, to represent an individual, Confucius, who is a member of the classes "person" and "mortal."
- To represent other individuals we must introduce separate symbols for each one, with means for representing the fact that all individuals who are "people" are also "mortal."

What do we need

- First-Order Logic (abbreviated FOL or FOPC) is expressive enough to concisely represent this kind of situation by separating classes and individuals
 - Explicit representation of individuals and classes, x, Mary, 3, persons.
 - Adds relations, variables, and quantifiers, e.g.,
 - "Every person is mortal "Forall X: person(X) => mortal(X)
 - "There is a white alligator "There exists some X: Alligator(X) ^ white(X)

The "Hunt the Wumpus" agent

Some Atomic Propositions

S12 = There is a stench in cell (1,2) B34 = There is a breeze in cell (3,4) W22 = The Wumpus is in cell (2,2) V11 = We have visited cell (1,1) OK11 = Cell (1,1) is safe. etc

• Some rules

(R1) ~S11 => ~W11 ^ ~W12 ^ ~W21 (R2) ~S21 => ~W11 ^ ~W21 ^ ~W22 ^ ~W31 (R3) ~S12 => ~W11 ^ ~W12 ^ ~W22 ^ ~W13 (R4) S12 => W13 v W12 v W22 v W11 etc

 Note that the lack of variables requires us to give similar rules for each cell.

Problems with the propositional Wumpus hunter

- Lack of variables prevents stating more general rules.
 E.g., we need a set of similar rules for each cell
- Change of the KB over time is difficult to represent
 - Standard technique is to index facts with the time when they' re true
 - This means we have a separate KB for every time point.

Summary

- Intelligent agents need knowledge about the world for making good decisions.
- The knowledge of an agent is stored in a knowledge base in the form of sentences in a knowledge representation language.
- A knowledge-based agent needs a knowledge base and an inference mechanism.
 - It operates by storing sentences in its knowledge base,
 - inferring new sentences with the inference mechanism,
 - and using them to deduce which actions to take.
- A representation language is defined by its syntax and semantics, which specify the structure of sentences and how they relate to the facts of the world.
- The **interpretation** of a sentence is the fact to which it refers.
 - If this fact is part of the actual world, then the sentence is true.

- The process of deriving new sentences from old one is called inference.
 - Sound inference processes derives true conclusions given true premises.
 - Complete inference processes derive all true conclusions from a set of premises.
- A valid sentence is true in all worlds under all interpretations.
- If an implication sentence can be shown to be valid, then given its premise its consequent can be derived.
- Different logics make different **commitments** about what the world is made of and what kind of beliefs we can have regarding the facts.
 - Logics are useful for the commitments they do not make because lack of commitment gives the knowledge base write more freedom.
- Propositional logic commits only to the existence of facts that may or may not be the case in the world being represented.
 - It has a simple syntax and a simple semantic. It suffices to illustrate the process of inference.
 - Propositional logic quickly becomes impractical, even for very small worlds.

Last Time: Propositional Logic

alarm ^ nighttime => burglar
stars => nighttime
nighttime => dark
dark => nighttime
burglar => crime
crime ^ dark => unsafe
alarm => noise
noise ^ nighttime => annoyed-neighbors
alarm
dark

Prove that this neighborhood is unsafe the above KB of facts

Problems with Propositional Logic

Impossible to make general assertions

"Pits cause breezes in adjacent squares"

 $B2,1 \Leftrightarrow (P1,1 \lor P2,2 \lor P3,1)$ $P3,1 \Leftrightarrow (B2,1 \land B3,2 \land B4,1)$

Stench Breeze -4 PIT Breeze Breeze -55 SS SSSS Stenda S PIT з '00' 111 20 Gold Stench S Breeze -2 Й Breeze - Breeze -ΡIT IN START 2 з 1 4

Pros and cons of propositional logic

③ Propositional logic is declarative

- Propositional logic allows partial/disjunctive/negated information
 - (unlike most data structures and databases)
- ③ Propositional logic is compositional:
 - meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- ③ Meaning in propositional logic is context-independent
 - (unlike natural language, where meaning depends on context)
- ☺ Propositional logic has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares"
 - except by writing one sentence for each square
 - •

- Propositional Logic
 - Is simple
 - Illustrates important points:
 - Model, satisfiability, inference
 - Is restrictive: world is a set of facts
 - Lacks expressiveness (world contains FACTS)
- First-Order Logic
 - More symbols (objects, properties, relations)
 - More connectives (quantifiers)

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
 - Objects: people, houses, numbers, colors, baseball games, wars, ...
 - Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
 - Functions: father of, best friend, one more than, plus, ...

Propositional Logic vs. FOL/FOPC

- Propositional Logic
 - The world consists of propositions (sentences) which can be true or false.
- Predicate Calculus (First Order Logic)
 - The world consists of objects, functions and relations between the objects.

Syntax of FOL: Basic elements

- Constants KingJohn, 2, NUS,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives \neg , \Rightarrow , \land , \lor , \Leftrightarrow
- Equality =
- Quantifiers \forall, \exists

Atomic sentences

or

Atomic sentence = predicate (term₁,...,term_n) term₁ = term₂

Term = function (term₁,...,term_n) or constant or variable

 E.g., Brother(KingJohn, RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$\neg S, S_1 \land S_2, S_1 \lor S_2, S_1 \Longrightarrow S_2, S_1 \Leftrightarrow S_2,$$

E.g. Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn) >(1,2) $\lor \le$ (1,2) >(1,2) $\land \neg >$ (1,2)

Universal quantification

• ∀<variables> <sentence>

•

Everyone at NU is smart: $\forall x At(x,NU) \Rightarrow Smart(x)$

- $\forall x P$ is true in a model *m* iff *P* is true with *x* being each possible object in the model
- •
- Roughly speaking, equivalent to the conjunction of instantiations of *P*

```
At(KingJohn,NU) \Rightarrow Smart(KingJohn)

\land At(Richard,NU) \Rightarrow Smart(Richard)

\land At(Jane,NU) \Rightarrow Smart(Bob)

\land ...
```

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :

 $\forall x At(x,NU) \land Smart(x)$

means "Everyone is at NU and everyone is smart"

Existential quantification

- ∃<variables> <sentence>
- Someone at NU is smart:
- $\exists x \operatorname{At}(x, \operatorname{NU}) \land \operatorname{Smart}(x)$

•

- $\exists x P$ is true in a model *m* iff *P* is true with *x* being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

```
At(KingJohn,NU) ∧ Smart(KingJohn)
∨ At(Richard,NU) ∧ Smart(Richard)
∨ At(Jane,NU) ∧ Smart(NU)
∨ ...
```

Another common mistake to avoid

- Typically, \land is the main connective with \exists
- Common mistake: using ⇒ as the main connective with ∃:

$\exists x \operatorname{At}(x, \operatorname{NU}) \Longrightarrow \operatorname{Smart}(x)$

is true if there is anyone who is not at NU!

Properties of quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- •

- $\exists x \forall y \text{ is not the same as } \forall y \exists x$
- •
- ∃x ∀y Loves(x,y)
 - "There is a person who loves everyone in the world"
- $\forall y \exists x Loves(x,y)$
 - "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)
- ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)
- •

Quantifiers

• Existential:

- There is a Northwestern Student from Hawaii.

• Universal:

- Northwestern students live in Evanston.

Examples

- All purple mushrooms are poisonous
- No purple mushroom is poisonous
- Every CS student knows a programming language.
- A programming language is known by every CS student

Equality

 term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object

• E.g., definition of *Sibling* in terms of *Parent*:

 $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg (x = y) \land \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Using FOL

- The kinship domain:
- Brothers are siblings
 ∀x,y Brother(x,y) ⇔ Sibling(x,y)
- One's mother is one's female parent
 ∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))
- "Sibling" is symmetric
 ∀x,y Sibling(x,y) ⇔ Sibling(y,x)

Interacting with FOL KBs

 Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t=5:

Tell(KB,Percept([Smell,Breeze,None],5)) Ask(KB,∃a BestAction(a,5))

- I.e., does the KB entail some best action at *t=5*?
- •

- Answer: Yes, {a/Shoot} ← substitution (binding list)
- Given a sentence *S* and a substitution *σ*,
- Sσ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) σ = {x/Jane,y/Sue} Sσ = Smarter(Jane,Sue)
- Ask(KB,S) returns some/all σ such that KB $\neq \sigma$

Knowledge base for the wumpus world

Perception

 $- \forall t,s,b Percept([s,b,Glitter],t) \Rightarrow Glitter(t)$

Reflex

 $- \forall t Glitter(t) \Rightarrow BestAction(Grab,t)$

Deducing hidden properties

∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
 [a,b] ∈ {[x+1,y], [x-1,y], [x,y+1], [x,y-1]}

Properties of squares:

• \forall s,t At(Agent,s,t) \land Breeze(t) \Rightarrow Breezy(s)

Squares are breezy near a pit:

- − Diagnostic rule---infer cause from effect $\forall s \text{ Breezy}(s) \Rightarrow \exists r \text{ Adjacent}(r,s) \land \text{Pit}(r)$
- Causal rule---infer effect from cause $\forall r \operatorname{Pit}(r) \Rightarrow [\forall s \operatorname{Adjacent}(r,s) \Rightarrow \operatorname{Breezy}(s)]$

Knowledge engineering in FOL

- 1. Identify the task
- 2. Assemble the relevant knowledge
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the specific problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug the knowledge base
- 8.

Knowledge Representation

- Representing general concepts
 - ACTIONS
 - -TIME
 - PHYSICAL OBJECTS
 - BELIEFS
- Ontological Engineering versus Knowledge Engineering

Upper Ontology

Categories and Objects

- Predicates
 - Basketball(b)
- Objects
 - Basketballs
- Inheritance
 - Every Apple is edible
- Taxonomy/Taxonomic Hierarchy

Stating facts about categories

- An object is a member of a category
- A category is a subclass of another category
- All members of a category have some properties
- Members of a category can be recognized by some properties
- A category as a whole has some properties

Categories

- Disjoint
 - Disjoint({Animals, Vegetables})
- Exhaustive Decomposition
 - ExhaustiveDecomposition({Americans, Canadians, Mexicans}, NorthAmericans)
- Partition
 - Partition({Males, Females}, Animals)

Physical Composition

- PartOf relation to relate two things
 - PartOf(Bucharest, Romania)
 - PartOf(Romanai, Eastern Europe)
 - PartOf(EasternEurope, Europe)
 - PartOf(Europe, Earth)
 - Therefore PartOf(Bucharest, Earth)
- Composite Objects
 - Biped has two legs attached to a body
 - Biped(a) => ∃ |1, |2, b Body(b) \cap Leg(l1) \cap Leg(l2) \cap PartOf(l1, a) \cap PartOf(l2, a) \cap PartOf(b, a) \cap Attached(l1, b) \cap Attached(l2, b) ...

Measurements

• Units Functions

– Length(L1) = Inches(1.5) = Centimeters(3.81)

Conversion

- Centimeters(2.54 x d) = Inches(d)

- More examples
 - Diameter(Basketballx) = Inches(9.5)
 - ListPrice(Basketballx) = \$(19)

- d E Days => Duration(d) = Hours(24)

Substances and objects

- Individuation
- Count nouns
 - One "cat" cut in two is not two "cats"
 - If it has any **extrinsic** qualities
- Mass nouns
 - One "butter-object" cut in half is two "butterobjects"

 - x E Butter => MeltingPoint(x, Centigrade(30))
 - All qualities are intrinsic